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Abstract

In this thesis, we construct an obstruction theory for A,-algebra structures
in stable co-categories. We use this to show that the spectrum S/4 admits an

As-multiplication.

Contents

1 Introduction|

2 A,-Operads|

(3  Building A, -structure in stable categories|

[3.1 A,-monoids from algebras in filtered object|. . . . . . . . . ... ... ..

[3.2  Obstruction theory| . . . . . .. ..
I;i.;i “l!s:llli!!g: g:s!ll:illl]!:! ‘l!!lll .......

4 Synthetic Spectra|

[5 Relating Obstructions in different categories|

[>.1 Map between Obstructions| . . . . .

(5.2  K,-Rings from the Thom construction| . . . . . . . ... ... ... ...

6 Homotopy associative multiplications|

[7.1 Localising Stable categories at primes| . . . . . . . . .. .. ... ... ..

[7.2  Locally Graded stable co-categories|

|8 _References|

e~ e W

13

16
16
17

23

29
29
30

31



1 Introduction

In higher algebra, a classic problem is what multiplicative structures there exists on
quotients of the sphere spectrum. In the discrete analogue, all abelian groups Z/nZ
admit unique commutative multiplications, so one would expect the spectra S/n admit
E.-ring structures, which is the higher analogue of commutative multiplications. However
what algebraic structures cofibers admit in higher algebra are much more complicated,
depending highly on what number the cofiber is taken of. The following results summarises
our current knowledge of this problem{T]

1. For a prime p, the Moore spectrum S/p admits an A,_;-algebra structure but not
an Aj-algebra structure.

2. For g > %(n + 1), the Moore spectrum S/27 admits an E,-algebra structure. For p
odd and ¢ > n + 1, the Moore spectrum S/p? admits an E,,-algebra structure.

3. The Moore spectrum S/4 admits a Ay-algebra structure, but not an Ey-algebra
structure.

While the first two results are quite strong, it is still an open question whether S/4
admits an [E;-algebra structure. The goal of the thesis is to give an improvement of the
current result:

Theorem A (Corollary . The Moore spectrum S/4 admits an As-algebra structure.

In Section 2| we introduce and define A,-algebras. In Section [3| we construct an
obstruction theory for A -algebra structures on a object in a stable co-category. Such
an obstruction theory is not new, with the first exposition given by Alan Robinson in
[Rob89| for A,-ring spectra. We will use a construction developed by Robert Burklund
in |[Bur22|, which works in a general stable symmetric monoidal oo-category.

Theorem B (Proposition . Given a symmetric monoidal stable co-category C and a
map r: X — le, there exists a sequence of inductively defined obstructions

O € [ 3XEF 1 /7],

such that the vanishing of 01, ...,0, induces a A,-algebra structure on le/r with unit
given by the cofiber map.

In Section [4] we shortly introduce the stable oo-category of Fa-synthetic spectra Syng,,
which is a deformation of the oo-category of spectra Sp, with a symmetric monoidal
functor 771 : Syng, — Sp. There is a map to the unit in synthetic spectra

PIREIV) i) vS,

IProofs of these statements can be found in |[Ang08|,|Bur22| and |[Bha22| respectively.



such that 7714 = 4. An A-algebra structure on vS/4 then induces a A,-algebra structure
on S/4. Working with S /4 instead of S/4, let us keep track of Adams filtration of maps,
which is useful for the next section. In Section [3] we establish a functoriality of our
obstruction theory, so that a monoidal functor F', will send the obstruction 6, on an
Ay_;-algebra A to the obstruction for the induced Aj_;-algebra structure on F(A). We
then define an E-ring R and a R-module ;S along with a monoidal functor

RModg(Syng,) — Syng,
S = vS/4.

If ;vS admits a Aj-multiplication, we show that the map sending the obstruction 5 for ;vS
to the obstruction for ¥S/4, is contractible, which implies #S/4 has an As-multiplication.
In the last section Section [6] we show that ;S admits an As-multiplication, by tackling
the universal case, given by the following theorem.

Theorem C (Theorem. Let C be a 2-local presentable symmetric monoidal stable oo-
category, X € Pic(C) andv : X — 1¢ be a map to the unit. If the map Q1 (v) : LX®? — 1
vanishes, then 1/v admits a homotopy associative multiplication.

1.1 Notations and Conventions

We will use the setting and language of co-categories developed by Jacob Lurie in [Lur09]
and [Lurl7].

1.2 Future work

In Section [3] Lemma only shows that the functor commutes with n-fold tensor
products, and not A, -monoidal, which require either a more detailed analysis of Day
convolution, or an alternative proof technique. The alternative construction of the
obstruction theory relies on Claim [3.12] which is not proved in this thesis. I hope to
later give a proof of this result, as it is both independently interesting, and is used in the
proof of Proposition [5.1]

In Section [6] Lemma [6.4] I hope to extend this lemma, to similar result for odd primes.
This should further lead to new proofs, that S/p is A,_;-monoidal.
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2 A,-Operads

There are different notions of an associative algebra structure on a topological space with
a unit map e : x — X. A topological monoid consists of a map p: X x X — X, that is
strictly associative and unital by satisfying the following identities.

p(p x 1) = p(1 x p)
ple x idy) = p(idx xe) = id, .

Another choice is an associative H-space, which instead of requiring the maps to strictly
agree, only requires them to be homotopic

[ x )] = [p(1 x )]
[n(e x idx)] = [p(idx xe)] = [idx].

Further, an As-algebra is informally an associative H-space together with a choice of
homotopy. In homotopy theory, associative H-space structures are more natural, since
the spaces of interest are only considered up to homotopy. Associative H-spaces however,
does not have the same useful properties as topological monoids have.

Remark 2.1. The Aj-operad is not coherent in the sense of [Lurl7|, which is used for
given a well-defined tensor product on the module category of an algebra. o

The problems with an associative H-space, can be seen with multiplication of four
elements. Each way of ordering the multiplication, gives a point in the space of maps
Mappp (X ¥4 X). Since the different ordering of multiplications are homotopic, we can
choose paths in the mapping space connecting the different points, as can be seen in the
following diagram.



(ab)(cd)

(ab)e)d a(b(cd))

(a(be))d a((be)d)

Figure 1: Space of multiplications of four elements.

From this picture we see that the space of multiplications of four elements, might not be
contractible. If we want to have a unique multiplication of f elements up to contractible
choice, we need a nulhomotopy of this loop. We can continue this inductively filling
out homotopies in Mapmy,,(X*", X). We then get different associative multiplicative
structures on X, depending on how many higher homotopies we require.

This leads to the definition of the A,-operads, first defined in [Sta63| and also described
in [Bha22|, involving the Stasheff-Associahedra polytopes K,,. In the language of planar
oc-operads ¢ : €¥ — N(A°P) introduced in [Lurl7, Section 4.1.3[} A,-algebras can be
described simpler, by hiding the homotopies inside the notion of functors of oo-categories.

Definition 2.2 (|Lurl7] Definition 4.1.4.2 (Unital Version)). Let ¢ : €® — N(A°P)
be a planar oc-operad and let 0 < n < oco. An A,-algebra object of € is a functor
A:N (A%pn) — C® with the following properties:

1. The following diagram commutes

2

N (A%) s N(A?).

2. For every inert morphism « : [m/] — [m] in A satisfying 1 < m’ < m < n, the
induced map A(«) : A([m]) — A(|m']) is a g-coCartesian morphism of C®.

2The oo-category of planar co-operads Opg}) is equivalent to the co-category (Op,,) /Assoc® of fibrations

of co-operads over Assoc®. We use planar oco-operads as the category A°P is easier to work with

than Assoc®.



We let Alg, (C) denote the full subcategory of
Funyaer) (N (AZ)), C) Xpun(a, ace) {7}

spanned by the unital A,-algebra objects of €. We will refer to Alg, (C€) as the co-category
of A,-algebra objects of C. o

Remark 2.3. From this we see that A,-algebras are like A_-algebras, where only
multiplication of up to n elements are well-defined. The oco-category Alg, (€) can also be
obtained as the oco-category of algebras over an oo-operad explained in |[Lurl7, Remark
4.1.4.8]. o

3 Building A, -structure in stable categories

Constructing A,,- and A -algebras concretely is often practically impossible, as these
structures involve a large structure of homotopies given by the Stasheff-polytopes K,
which have complicated cellular structure. On the other hand, the Stasheff-polytopes K,
are homeomorphic to the disks D,,_o which are much simpler, leading to an obstruction
theory for A,-algebra structures.

We here give one construction based on filtered objects in a stable category. We also
sketch a second construction, which however is not proven.

3.1 A,-monoids from algebras in filtered object

Definition 3.1. Let Zf! be the category with objects the integers and maps

xifn<m

Mapzm(n,m) = {@ > m

It is given the symmetric monoidal structure by addition on objects. o

Definition 3.2. For any oo-category €, the oo-category G of filtered objects in € is
defined as Fun(Z, €). If € admits an symmetric monoidal structure C®, we let (Gﬁ1)®
denote Ci! with symmetric monoidal structure given by Day convolution. |Lurl7, Example
2.2.6.17] o

The tensor product of two filtered objects X,Y € €fil is given by

(X ®Y), ~colim X; ®Y].

i+j—n

Definition 3.3. Given a symmetric monoidal co-category €, and an integer n, let C,
denote the full subcategory of Cfi! spanned by filtered objects X € Cf! satisfying:

1. X,, ~ 0 for m < 0.



2. XO ~ 1@.
3. fom @ Xy — Xy is an equivalence for 1 <m < m’ <n.

Furthermore let €% denote the co-operad spanned by objects X1 ®---® X, with X; € C,,.
o

Remark 3.4. An object of €, is equivalent to a filtered object, which on the first n
terms are on the form

idy

id id
> 0 y 1 —% 5 X —X s X —5 s X

1] [0] [1] 2] [n].

C¥ is not an symmetric monoidal oo-category, as €, is not closed under tensor products.
o

We will now show that A -algebra structures on X € C, get send to A,-algebras
structures on X,,. First we recall the definition of an A, -operad map.

Definition 3.5. Given planar operads C®, D® an A,-operad map, is a functor
f S C® XN(Aan) N(AOP) — D¥ XN(Aipn) N(AOP)
with the following properties:

1. The diagram

G® XN(A%pn) N(Aop) s D® XN(A%pn) N(AOP)

\ /

N(AZ,)
commutes.

2. For every inert morphism « : [m/] — [m] in A satisfying 1 < m’ < m < n, the
induced map A(a) : A([m]) — A([m/]) is a g-coCartesian morphism of C¥.

o
Remark 3.6. An A -operad map f induces a functor
Alg, (€) — Alg, (D)

by composition with f for every natural number n. o



Lemma 3.7. The composition
2 s (CH)® iy @
is an A, -operad map.

Proof. We will to show that ev,, commutes with up to n-fold tensor products. That is
given n’ < n and Fy,..., F, € G, we have

(F1® - @F)n)~Fn) - - F/(n).
From the formula of Day convolution, the tensor product of n’ elements evaluated at n is

(Fl R ® Fn/)(n) = colim Fl(il) X...RQ Fn/(in/).

i1t <n
We can in this case disregard all objects in the colimit where some ¢; > 1, since all maps
Fi(i) @ @ Fj(1) @+ Q Fy (i) = Fi(i1) ® -+ @ Fj(ij) ® -+ @ Fy (i)
are equivalences, and as such does not affect the colimit, so we have

(F1®- - ®Fy)(n)~ colim F(i1) @ & Fy(ip).
(i;)€{0,1}

The diagram the colimit is taken over, is the simplicial set (A")". In this case the map
A" C (AY)™ to the vertex (1,...,1) is cofinal, since the horn inclusion A} C A is right
anodyne, and right anodyne maps are closed under compositions and products with
simplicial sets. It follows that

(FL®- @ F)n) 2 F(1)®- Q¢ Fy(l) 2 Fi(n)® - Qe Fy(n)

for all 1 < n’ < n, showing that ev,, is A,-monoidal on the subcategory C%. O]

Fi(0) @ Fo(0) —— Fi(1) @ Fy(0) —=— Fy(2) ® F3(0)

| |

Fi(0)® Fy(1) —— Fi1(1) ® F»(1)

|

F1(0) ® Fy(2)

Figure 2: The colimit diagram for (F} ® F»)(1), with F;(1) ® F5(1) being final.



3.2 Obstruction theory

In |Bur22, Proposition 2.4|, an inductively defined obstruction theory {6 }xr>2 is con-
structed for a map r : X — 1¢ in a stable symmetric monoidal oco-category, such that
the vanishing of all obstructions {0 }r>2 give an A -algebra structure on le/7.

Proposition 3.8 (|[Bur22|, A -version). Given a map r : X — le in C, there exists a
sequence of inductively defined obstructions

O € [S72(22X), 1¢/7] for k> 2,

whose vanishing allows us to inductively construct a sequence of A, -algebras

N L

le=R R R - > 1e/r

converging to an Ay -algebra structure on le/r, where each map Ty sits in a pushout
square

le {272(22X)} =5 1

g !

In the proof of this proposition, it is further shown that if the obstructions 6s, ..., 0,
vanish, we get an A, structure on a filtered object R" € €, with (R"), ~ le¢/r. The

image of R" under the functor
Alg, (C) — Alg, (€) — Alg, (D)

is then an A -algebra with 1¢/r as the underlying object. It follows that the vanishing
of the obstructions 6, ...,0,, implies the existence of an A,-ring structure on 1le/r.
Summing up, we get the following proposition.

Proposition 3.9. Given a map r : X — 1¢ in C, there exists a sequence of inductively
defined obstructions

6, € [D2FB3XEF 16 /7],

such that the vanishing of 01, .. .,0, induces an A, -algebra structure on le/r with unit
given by the cofiber map.

3.3 Alternate construction

We here sketch another construction of the obstruction theory based on an unital version
of the following theorem by Lurie in [Lurl7, Theorem 4.1.6.8|.

10



Theorem 3.10. Let C be a monoidal oco-category, let A be an object of C, and let n > 2.
Then there is a pullback diagram of oco-categories

Algh® (€) xe {A} ——— Mape(A®", A)*r
Algl" (€) xe {A} —2 Mapg(A®", A)2Kn.

Where Algy" (€) is the oco-category of non-unital A,-algebras in C.

This theorem states informally, that the additional data to extend a nonunital A,,_;-
algebra to a nonunital A -algebra, is a multiplication map of n elements p,, : A®" — A,
such that it is compatible with the A,,_;-structure.

A similar result should hold for unital algebras, but in this case the extension should
also respect the unital structure, so that there are homotopies u, o %, ~ p,_1, where
im @ A" — A®" s the map giving by the unit map in the m’th coordinate. The
following construction allows us to encode these homotopies.

Construction 3.11 (|Bha22|). Let [n] denote the category of ordered subsets of
{1,...,n}, and C(n,n — 1) be the full subcategory consisting of subsets of at most
order n — 1. Given an object A in a monoidal co-category €, we have a functor

Frfn_l :C(n,n—1) = C,
sending a set of order i to A®*, and sending an inclusion i C j to the map uy j : A% — A%
given by id4 for j € I and the unit map for j ¢ I. Let T be the colimit of F* o

n,n—1°

By the inclusions of the unit, we get a map T — A®". A unital version of |[Lurl7,
Theorem 4.1.6.8] should then be the following.

Claim 3.12. Let C be a monoidal co-category, let A be an object of C, let ¢ : 1¢ — A
be a map from the unit, and let n > 2. Then there is a natural pullback diagram of
00-cateqgories

Alg, (€) Xe,, {15 A} > Mape(A®™, A)Kn

! l

Alg,, ,(€) Xey, {1 = A4} 2, Mapg(A®", A)2Kn X Mape (T,4)7%n Mape(T), A)Fn,

This result seems harder to prove than Theorem as the subcategory AL, — A,
only having the injective morphisms in A<, which is used to define Alg}"(C), is much
simpler than A<, as the morphisms only go in one direction. We will show how this
claim leads to the obstruction theory when C is a presentable stable co-category.

Construction 3.13. Let € be a presentable stable monoidal co-category, and u : 1¢ — A
be a map from the unit to an object. Since Sp is the unit in Prf;,, every stable co-category

11



is left-tensored over Sp, and further enriched over Sp by |Lurl7, Proposition 4.2.1.33]. In
this case we have an equivalence

Mape(A®™, A)f = Mape(S7K, @ A%", A),
and similar for the other mapping spectra

Mape(A®", A)BK” X Mape (T,4)Kn Mape(T, A)K”
= Mape (EooaKn X A®n HE‘”@Kn(@T EOOKn &® T, A) .

We can then take the fiber of the map
V20K, ® A®" Uswpr,or DK, @ T — LK, @ A®",

which is equivalent to the desuspension of the cofiber. This is then the total cofiber of
the diagram.
YOOK, QT — YK, T

| |

VXK, ® A" —— YK, @ A",
which is
YK, 0K,) ® (A®"/T) i 2”72(A/u)®”.

From this we get a cofiber/fiber sequence

Mape (A®n, A)Kn — Map@<A®n, A)@Kn XMap@(T,A)f’K" Mape (T, A)Kn
5 Mape(S"3(A/u)®", A).
&

Remark 3.14. Given an A,,_j-algebra A in € with unit u : 1¢ = A, we have a diagram

Alg,, (€) xe,, {1 & A} > Map(A®", A)&n

! |

x+ —2 Alg, (@) xe,, {1 = A} — 7 Map(A®", A)PKn X Map(T, A)25n Map(T, A)Fr.

From Claim [3.12] giving an extension of A to an Aj,-algebra, is equivalent to a lift of
B(A) to Mape(A®™, A)5n. Since Mape(A®", A)En is the fiber of the map

Mape(A@m?A)aK" X Mape (T,4)2%n Mape(T), Ay 4 Mape (3" 3(A/u)®", A),

the space of extensions of A to an A, -algebra structure is equivalent to space of nulho-

12



motopies of gB(A). So gqB(A) is an obstruction for extending A,,_;-algebra structures.
If A is the cofiber of a map to the unit X — 1¢, then the obstruction lies in the same
group as the obstruction in Proposition [5.1]

4 Synthetic Spectra

We will apply the obstruction theory from Proposition 3.9, to show that S/4 admits an
Ajs-algebra structure. Since S/4 already admits an Ay-algebra structure, the relevant
obstruction is 5 € m7(S/4) # 0. The obstructions are hard to calculate concretely, and
since 05 does not lie in a null-group, it does not vanish automatically. We will instead
apply Proposition to a stable oo-category related to Sp.

To do this we introduce the co-category of synthetic spectra Syn; with regards to an
Adams spectrum FE introduced in [Pst22]. We follow the exposition given in [BHS19],
where the focus is not on the construction of Syng, but on what properties it satisfies.
We refer the reader to both of these sources for a more detailed account of synthetic
spectra.rﬂ

Definition 4.1. Suppose that E is a homotopy associative ring spectrum such that E,
and E,FE are graded commutative rings. Following |[Pst22, Definition 3.12|, we say that a
finite spectrum X is finite E,-projective (or simply finite projective if E is clear from
context) if F, X is a projective F,-module. We say that E is of Adams type if E can be
written as a filtered colimit of finite projective spectra FE, such that the natural maps

E*E, — Homg, (E.E,, E,)
are isomorphisms. o

Construction 4.2 (Pstragowski). Let £ denote an Adams type homology theory. Then
there is a stable, presentable symmetric monoidal co-category Syny together with a
functor

vg @ Sp — Syng,

which is lax symmetric monoidal and preserves filtered colimits [Pst22, Lemma 4.4].
However, vg does not preserve cofiber sequences in general. When E is clear from context,
we will often denote vg by v. o

Example 4.3. The spectrum HF, is of Adams type, which is the only example we will
use. In this case the functor vy, is symmetric monoidal [BHS19, Remark 9.5|. o

Since v does not preserve all cofiber sequences, the synthetic spectra Xv(S) and v(XS)
are not isomorphic. We therefore have two different gradings on Syn.

3Note our convention of bigraded spheres matches |[Bur22| and not the above sources. In particular
S%¥ correspond to S*2*? in |[BHS19] and |Pst22)].

13



Definition 4.4. The bigraded sphere S*® is defined to be X~%v(S**?). The map from
the universal property of the pushout

SOt =3y = p(ESTH = 8§

is denoted by 7. The cofiber of 7 is denoted C'T. A synthetic spectrum X is 7-invertible
if the map idy ®7 : %' X — X is invertible. The oco-category Syng(7~!) is the full
subcategory of T-invertible synthetic spectra. o

The following theorem summarises the properties of the co-category of synthetic spectra
we will use in this thesis.

Theorem 4.5 (Pstragowski).
1. The localization functor given by inverting T is symmetric monoidal.

2. The full subcategory of T-invertible synthetic spectra is equivalent to the category of
spectra.

Yo v is equivalent to the identity functor on Sp.

3. The composite T~
4. The object Ct admits the structure of an E-ring in Syng.

5. Suppose that E is homotopy commutative. Then there is a natural fully faithful,
monoidal functor
Modg, — Stableg, g,

where the target is Hovey’s stable oo-category of comodules and the composition of
v(—) ® C1 with this functor is equivalent to E.(—).

We can construct the following diagram, where every arrow except v and E.(—) is a left

adjoint.
Sp Eu(-)
ids/ ll’ \

Sp «—— Syny —<% Mode, — Stableg, g

The reason we introduce synthetic spectra, is that it allows us to keep track of the
Adams filtrations of maps.

Definition 4.6 (Adams Filtration). Let f: X — Y be a map between spectra, and E
be a spectrum. The map f has Adams filtration > n with regards to F, if f can be
written as a composite of maps

X=Xy—..—>X,=Y,

where each map in the composite induces the 0 map on homology with E. o

14



Remark 4.7. The filtration matches the filtration from the Adams spectral sequence for
E. o

Lemma 4.8 (|[BHS19| Lemma 9.15). If a map f : X — Y of spectra has E-Adams
filtration k, then there exists a factorization in E-synthetic spectra
v(Y)

Tk

7

fo.-
.
_
.
.
P

-
-

20k (x) A 50k, (v,
Example 4.9. The map 2 : S — S has Adams filtration 1, so there is a map 2 : S»* — vS
with 72 = 2. Note that 7~'(S*/2") ~ §/2". Since localization by 7 is a symmetric
monoidal functor, an A, -structure on vS/4 induces a A,-structure on vS/4. o

Proposition 4.10. The synthetic spectrum vS/4 admits an As-multiplication.

Proof. Applying the obstruction theory from Proposition [3.9| to the map 4 : $»2 — 'S in
Syng,, we get the obstructions

Qk € [VSZk_3’3,VS/Zl:] = 7T2k_373(VS/21:)

for & > 2[ From the calculation of the Ey-page of the Adams spectral sequence in
[IWX22|, we get that there is no differentials in topological degree less than or equal to
12. [BHS19, Theorem A.8| then implies that in this range the homotopy groups m s(v'S)
are given by the Es-page of the Fo-Adams spectral sequence of S tensored with Z[7].
From this, we can calculate the bigraded homotopy groups of vS/ 4 pictured below.

4Bach obstruction is only defined by a nulhomotopy of the previous obstruction, so they are not
uniquely defined, and only exists if the previous obstruction vanishes.

15



2 //T
A

—® ”jb@

0 2 4 6 8

Figure 3: Bigraded homotopy groups of vS/4 without 7-multiples. Each dot represents a
copy of Fy

Since T € my—1(¥S), any T-multiple lives below non 7-multiples. We then see from the
above diagram, that the obstruction 6, vanishes since it lives in a null-group. O]

The location of an eventual third and fifth obstruction does not lie in a null-group, so
they do not vanish formally. The next sections are dedicated to showing these obstructions
vanish.

5 Relating Obstructions in different categories

In Section , we saw the obstructions 63, 05 for VS/Zl being a A3- and As-ring spectrum
respectively, lies in the bigraded homotopy groups 733, 77 3 for (¥S/4) which are both
non-trivial.

To remedy the situation, we will show that these obstructions factors through the quo-
tient map vS — vS/ 22 which is null on both 73,3, 7,3, implying the obstructions vanishes.
To do so, we will establish a functoriality of the obstruction theory of Proposition [3.9]
and use it on another stable co-category.

5.1 Map between Obstructions

A monoidal functor F' induces a functor on oo-categories of A-algebras. The following
proposition shows that F also maps the obstruction from Proposition[3.9to the obstruction
on the target.

16



Proposition 5.1. Let F': C® — D® be an exact monoidal functor of stable monoidal
oo-categories, and let A € Alg, — (C) be an Ay_i-algebra with unit u : 1e — A.

The map F sends the obstruction 6y from Proposition[3.9 for A to the obstruction for
extending the induced Ay_1-algebra structure on F(A) to a Ag-structure by the map

Mape (5273 (A/u® A) L Mapy, (S22 F(A)/F(u)®*, F(A)).
If F admits a right adjoint R, the above map factorises as
Mape (S 3 A /u® | A) 2555 Mape(Z2* 3 A/u®*, RF(A))
% Mapy (23 F(A)/F(u)®*, F(A)).
Where ¥ is adjunction map, and n is the unit of the adjunction.

Proof. From the naturality of Claim [3.12] The obstruction of A is mapped to the
obstruction of F'(A) by the map given by the universal property

Mape (A®", A)*" £ Mapy (F(A)®", F(A))*"

l l

Mape (A%, A)?" Xy 10 o o Mape (T, A" —L Mapg (F(A)®", F(A)" %y,

l |

Mapg (S 3A/u®k| A) - > Mape(S2* 3 F(A)/F(u)®*, A).

Ky
(1.r(ay2kn Mape (T, F(A))

Since the two first horizontal maps are given by F', the induced map is also given by
F'. The statement of right adjoints, follows from the definition. m

Example 5.2. Let A, B be Es-algebras in a symmetric monoidal category €%, and let
¢ : A — B be a morphism in Algg (€). Then the functor

RMod4(€) — RModg(C)
M— M®ysB

is E;-monoidal by |Lurl7, Theorem 4.8.5.16|, with right adjoint given by restriction of
scalars. o

5.2 E.-Rings from the Thom construction

We will now construct a map of E,-rings to use Proposition [5.1] and Example [5.2l To do
so we use the Thom construction given in |Car+23|. While [Car+23| only deals with
groups, the construction only uses the underlying monoid structure, and so works equally
well for monoids.

Definition 5.3. Given a presentably symmetric monoidal co-category C, let Pic(C)
denote the subgroupoid of €, spanned by invertible objects and equivalences between
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them with E..-group structure given by the tensor product. The Thom functor

The : Algg_(8)/pice) — Algg__(€)
(¢ : X — Pic(€)) — colimy (i o )

is constructed in |Car+23|, where i : Pic(C) < € denotes the inclusion. o
The following proposition gives a unique characterization of The up to isomorphism.

Proposition 5.4 ([Car+23|). Let M be an E,-monoid and suppose that for every
€ € CAlg(PrY), we have a functor

Thg : Mapg, (M, Pic(€)) — Algg ()

lifting colimy; along Alg, (C) — €, and such that for every F': € — D € Algg (Pr"), we
have a natural isomorphism

F(The(¢)) ~ Thp(F(£)).
Then for every €, we have an isomorphism of functors Thy ~ The.
Notation 5.5. We will write The as Th, when € is obuvious.

Corollary 5.6. The compositions
Mapg_ (N, Pic(€)) —% Algg_(€) < Algz, (€)

and

ev<1>

Mapg_ (N, Pic(€)) = @ 251, Alg, (€)

are wsomorphic.

Proof. The functor Freeg, exists and agree with colimy in € by [Lurl7, Proposition
4.1.1.18], so both compositions are lift of colim N. Furthermore given F' € Alg(Prl) with
right adjoint R, we have the diagram

Algg, (€) «—— Algg, (D)

| lo

so Freeg, o F' ~ F o Freeg,, since they are left adjoints to isomorphic functors. It follows
that both res o The and Freeg, o ev(;y uphold the properties of Proposition and are
therefore isomorphic. O

We will now calculate the Picard groups for certain symmetric monoidal co-categories.
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Lemma 5.7. Given functors in Algg_(Pr")
chnbe
with F fully faithful and GF ~ ide, we get a splitting in Grpg_(S).
Pic(D) ~ Pic(C) & G
where G is discrete.

Proof. Since F,G are symmetric monoidal, we get a splitting

. Pic(F) . .
Pic(C) :(G; Pic(D) —— cofib(Pic(F)).

We then have an equivalence
Pic(D) ~ Pic(€) & cofib(Pic(F)).

Since F is fully faithful, m, Pic(F') is an isomorphism for n # 0, and my Pic(F') is an
injection, so m, cofib(Pic(F)) vanishes for n # 0. O

Example 5.8. For Syny,, we have the splitting

Sp % Syng, i> Sp
with 771v ~ 1 and v fully faithful, so we have an equivalence
Pic(Syng,) ~ Pic(Sp) @ Gsyn,,

with Gsyn,, ~discrete. The synthetic spectrum S%? is invertible, with inverse S"~2, so
S%~% € Pic(Syng,). Since 77! (S%72?) =~ S, we have S?? is send to the sphere S in Sp, so
we have S%2 € Gsyng, - o

Definition 5.9. Let Z% be the symmetric monoidal category with objects being the
integers, and morphisms being only identity morphisms, where the symmetric monoidal
structure is given by addition on the integers.

For an oo-category €, the oco-category of graded objects C%" is defined as the functor
category Fun(Z®, C). If € is (symmetric) monoidal, then €' is given the (symmetric)
monoidal structure from Day convolution. o

Example 5.10. For C%", we have the splitting

e i_o> G’Gr colim e’
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where 7y is the inclusion in the 0’th coordinate. We then have an equivalence
Pic(C%") ~ Pic(C) @ Gecr

with Gear discrete. The graded object 1¢(1) is invertible in €%*, with inverse 1¢(—1), so
le(1) € Pic(Syng,). Since colim (1¢(1)),~ le The graded object 1¢(1) maps to the unit
in €, so we have le¢(1) € Gear. o

Example 5.11. Combining the two above examples, we get an equivalence
Pic(Syng”") ~ Pic(Sp) & G’

with §%%(1) € G' = Ggynor ® Gsyn, . Since G’ is discrete, we get a map of monoids
2
N — G’ — Pic(Syng"), sending 1 to S®2(1). o

Construction 5.12. We have an adjunction

with 79 symmetric monoidal, so 7> is lax monoidal, giving a functor

Algg_(Sp®) =% Algg_(SpSh).

o
Definition 5.13. We let R%" denote the E..-algebra given by the image of the map
¢ : N — Pic(Syng!) sending 1 to S*2(1) by the functor
Maps_ (N, Pic(Syn})) = Algs__(Syng}) = Algs_((Syng)>0),
and R be given by the image of R%" under the map
r colim
Algg ((Synﬂ% )>0) — Algg_(Syng,).
o

Remark 5.14. Since the Thom functor on underlying objects is given by colimy,
the underlying graded synthetic spectrum of R%" is @D..cn S°?"(n). Furthermore R
must have underlying synthetic spectrum given by @neNO S%2" with homotopy groups
Tu xR = ., vS[z] with z sitting in bidegree (0, 2). o

Remark 5.15. We have an adjunction

Po
(Syng)so 7 Syng,,
io
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where both ig and py are monoidal, so the unit and counit of the adjunction is monoidal.
Applying the unit to RS*, we then get a E.-map of graded synthetic spectra

RGr — iopoR = VS(O)

We can further take the colimit on both sides, which is a symmetric monoidal functor,
giving a E,-map of synthetic spectra

R — vS.

Synthetic Obstruction Map

We will now use the map R — 1S, to give a map of obstructions. Since R is an E.-ring,
there is a symmetric monoidal structure on the module category RModg(Syny, ).

Definition 5.16. Let ;vS be the cofiber of the map X*?R A Rin RModg(Syng,). ©

Remark 5.17. The notation is supposed to suggest that jv/S has underlying synthetic
spectrum vS, where the free generator of R acts by multiplication by 4. To see this, note
we have a long exact sequence

Tapz(R) < ap(R) — Tap(3S) —— Tar1p-1(R) “5 Tae1p1(R)

and since 7, 5(R) = 7, (vS)[z], we have
Tap(1VS) = map(VS)[2] /(7 — 4) = 7,4 (LS)
so the map on underlying synthethic spectra
vS— R —; 1S

is an equivalence. o

The E-ring map R — vS induces a symmetric monoidal map on module cate-
gories by the pushforward functor. Since vS is the unit in Syng, , its module category
RMod,s(Syng,) is equivalent to Syng, .

Lemma 5.18. The symmetric monoidal functor RModg(Syng,) — Syny, induced by the
map R — vS, sends jvS to vS/4.

Proof. The pushforward is a left adjoint, so it commutes with colimits. We then have

cofibp(E**R ™ R) ®5 1S = cofibsyn,, (E°208 5 1S) 2 1S/,
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Combining this lemma with Proposition [5.1] and Example [5.2], we get

Proposition 5.19. An A,,_;-algebra structure on juS over R, induces a A, _1-algebra
structure on vS/4, and the obstruction for an A,-algebra structure on jvS over R, gets
mapped to the obstruction for an A,-algebra on vS/4 by the map

7T2n,373(l/8) = Ty MapR(EQn_?”gR,i VS)
T, o Map (X233 R, 1S /4)
2y 70 MaupsyrlIF2 (2273308, US/4) = T, _33(1S/4).

In particular, we have the following proposition.

Proposition 5.20. If 5vS admits the structure of an A,-vS[S*?]-algebra structure then
vS/4 admits an As-structure, implying that S/4 admits an As-algebra structure.

Proof. In thi~S case the As-obstruction is well-defined for ;v/S, and as such the Ay obstruc-
tion for vS/4 factors through the map

77 3(VS) — 7T773(VS/41) .

We draw the homotopy groups of ©/S below, with vertical lines denoting 2 multiplications.
From this we see 77 3(vS) only consists of 4-multiples so the map is null.

8 °
°
6 °
°
4 ° .
Vo & 6 & °
2 * e e o
o e ‘
0 o
0 2 4 6 8

Figure 4: Bigraded homotopy groups of vS without 7-multiples. Each dot represent a
copy of Fs.
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Remark 5.21. The location of the obstruction for an Ay4-algebra structure on ;S over
R is a null-group by the above picture so it suffices for Proposition to show that
iVS is an As-algebra over R. o

We will now show ;S admits an Ag-algebra structure.

6 Homotopy associative multiplications

In this section every stable co-category is 2-local, in the sense of Section [7.1 We will
suppress the (2) from the notation.

Theorem 6.1. Let C be a presentable symmetric monoidal stable co-category, X € Pic(C)
and ¢ : X — 1¢ be a map to the unit. If the map Q1(p) : LX®* — 1¢ vanishes, then
le/ admits an Ag-multiplication.

To prove this result we will tackle the universal case.

Lemma 6.2. There exist a symmetric monoidal stable locally graded presentable oo-
category A € CAlg (Trléd), such that for any other C € CAlg (Tr%}d), the diagram

Fung , c.(A,C) > ok
(. [
Map@(T(le), 1@) T) Map@(ETQ(le), 1(3)

is a pullback square, where Q1 assigns the power operation Q1 to maps in T'(le) — le.

Proof. We will first construct A. From Section we have Sp" is the initial object
in CAlg (Prl,). Given B € CAlg(Sp®), from [Lurl7, Remark 4.8.5.12] we get an
adjunction

Fungfréd (RMOdB(SpGr), D) >~ Mapcje(sper) (B, Ende(Q)) ,

where End®? is the graded algebra of endomorphisms of the unit described in [Lurls)
Remark 2.4.9]. Let S{v}, S{w} € CAlg(Sp®") be the free E..-algebras on generators v, w,
where v has degree 0 and filtration 1, and w has degree 1 and filtration 2. Let A be
pushout in Algp__ (SpGr) of the diagram

s{w} 2% s

og

)
|
A.

"
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From the above adjunction, we have

Fu
~ Mapg,er (S(1), End“!(D))

n%réd (RModA(SpGr), @)
X

Mapg,c: (51(2),End% (D)) *

~ Mapy(1(1), 1) XMapy (S15(2),10) *-
A symmetric monoidal functor in Prk, out of RMod(Sp“"), is then given by a map
¢ : 1p(1) — 1, such that Q(p) is nulhomotopic. O

Remark 6.3. Applying the above result to the identity RMod 4(Spg,), we get a universal
map is A(1) = A, which is adjoint to the map v : S(1) — A. It then follows that a
symmetric monoidal functor F': A — D determined by a map ¢ : 1p(1) — 1p sends v
to ¢, and A/v to 1p/¢p. o

We will now study A more carefully.

Lemma 6.4. The map given by S{v}(1) = S{v} induce an isomorphism

Proof. By |Lurl7, Example 3.1.3.14], the underlying graded spectrum of 1(S(1)) is

D Symg,e (S(1)) =~ @ Symg, (S)(n)

n>0 n>0
so we have

Mapg,o(S'(3), 1{S}(1)) = Mapg, (§', Sym3, (§))
Mapge: (5'(3), 1{S}) ~ Mapg, (8, Symd, (5)).

The remaining part of this proof is to show that the map from Symgp(S) = XBYy) to
Symgp(S) = XBXy() is an equivalence, where Y, is the symmetric group, and the map
is induced from the inclusion of 5 to 3. Since the spectra are 2-local, it is enough to
show the map induce an isomorphism on Fy- homology. We have

We can calculate H,(BX3;Fy) using the Hochschild—Serre spectral sequence, with the
normal subgroup [F3

Hy(Fp, Hy(F3,F2)) = Hpiq(35,F).
We have

]FQ p:O

0 else

HP(F35F2) = {
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so the groups in the spectral sequence are given by.

]F2 q:O

H,(Fa, Hy(F3,Fy)) = {0 else

So the spectral sequence degenerates on the first page

From this we get both spectra have the same Fy-homology. We further have the
composition

Y2 ey 3 T8 32

is the identity, which implies the map H,.(BYs;Fs) — H,(BX3;F,) is injective. It follow
then since they have isomorphic finite homology in each degree, that the spectra are
equivalent. O

Since our spectra are 2-local, we can also from the Fs-homology, find a minimal cellular
structure of them, displayed here.

4 C)4<U)RQ4( ) "Uk
Q3<U>'77 Q3(v) -ve
2 02(0)(%(0)-@(
9 )
Ql(v)J Q1(v) - UJ
o | & 5 Y g
0 2

Figure 5: Cell Structure of S{v}, in filtration 0 to 3, with horizontal axis giving filtration
and vertical axis giving the degree. Each dot represent a copy of the sphere
spectrum.
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Lemma 6.5. The map A(1) = A induce an isomorphism
Mapg,c:(S'(3), A(1)) — Mapg,c:(S'(3), A).

Proof. This follows from the previous lemma, as the only cells attached in the diagram

s{w} 2% s}
ol
S— A
in filtration 3 or less, is a cell S!(2) denoted by w and a cell S!(3) corresponding to v - w,

attached to @1(v) and Q1 (v) - v respectively, so it has cell structure given in the following
diagram.

2 3
0| e . ‘o A
0 2 4

Figure 6: Cell Structure of A, in filtration 0 to 3, with horizontal axis giving filtration
and vertical axis giving the degree. Each dot represent a copy of the sphere
spectrum.

Which is identical in filtration 2 and 3. O
Proposition 6.6. The cofiber A/v admits a As-multiplication.

Proof. From Lemma we can calculate the cell structure of A/v.
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This then shows there is no non-trivial maps from any spheres in filtration 3. In
filtration 2, there are no maps from spheres of degree less than 2. The obstruction to
giving a As-structure on the cofiber of v lives in

[S1(2), A/v]sper

which is a nul-group so the obstruction vanishes automatically.
The obstruction to giving a Ag-structure lives in

[(ZAQ), Aftlgaon s = [S°(3), Afvlgyen

which is also a nulgroup, and so also vanishes. We can then conclude from Proposition [3.9]
that A/v admits a Ag-multiplication. O

Proof of Theorem[6.1]. Let C be a presentable symmetric monoidal stable category, and
let X € Pic(€). Then the functor

el e ™e

is an equivalence of €, so C admits the structure of a locally graded oo-category with
le(1) = X. A map ¢ : X — 1 with Q1(¢) nulhomotopic, then gives a symmetric
monoidal functor RMod4(Sp®*) — € sending A/v to le/¢ by Lemma . Since A/v
admits an Ag-algebra structure, the functor induces a Az-algebra structure on le¢/p. O
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We can apply this result to finish our study of S/4. From Proposition [5.20} to prove S/4
admits an As-multiplication, we just have to prove that ;S admits a Az-multiplication.

Lemma 6.7. Given a symmetric monoidal functor F : €% — D% and a E-algebra
X € Algg_(€) and a map ¢ : A — X, we have

F(Q1(v)) = Q1(F(p)).

Proposition 6.8. the synthetic module ;S admits an Asz-algebra structure over R.

Proof. The module ;18 is the cofiber of the map z — 4 : £%?R — R in RModg(Syng,).
$%2R is a unit in RModg(Syng, ), so we are left to check @1(z — 4) is nulhomotopic.
We have a diagram

r[Z"R, R —= s [ES[z], S[z]]

! -

Syng, [2173V87 R] L) SP[ZSJ S[JI]L

where the horizontal maps are injections, since there is no 7-torsion in these ranges.
To check @Q1(x — 4) is nulhomotopic, we can then equally show @Q;(z — 4) in Sp is
nulhomotopic. Here we have the rule

Q1(z —4) = 16Q1(2) + 2°Q1(4) + nz4.

We have )1(4) = 0 and 7 is 2-torsion, so the last two terms vanish.
For Qi (z), recall it is given as the composition

St = Dy(S) 229 Dy(S[z]) — Slz]

where Dy(X) = X2 is the second extended power. The multiplication on S[z] ~ [0S
is given by

(]_[S) ® (]_[ S) ~ [] ses=]]s
n>0 m>0 n,m>0 n>0

which sends the (n,m)’th term to the n 4+ m’th term with the multiplication map of S.
From this we get a commuting square

S'—— Dy(S) 22 Dy(S[a))

S —= 4 S[a].

We then see that Q(z) = Q(1)z? = 0, Since Q;(1) =0 in S.
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Corollary 6.9. The spectrum S/4 admits an As-multiplication.

7 Appendix

7.1 Localising Stable categories at primes

Since our primary object of interest is S/4, we would like to focus on 2-complete
presentable categories. For this we introduce Bousfield localisation.

Definition 7.1. Amap f : X — Y in Spis an E-equivalence, f EQf: FQX — FRY is
an equivalence of spectra. A spectrum Z is E-local if for every E-equivalence f : X — Y,

Map(Y, Z) £ Map(X, Z)

is an equivalence. An E-localization of X is an FE-local spectrum LgX, with an E-
equivalence X — Lg(X). o

An FE-localization always exists and is unique.

Example 7.2. Localization with respect to the Moore spectra E = SZ, is called
p-localization. The spectrum S/4 is 2-local. o

We denote the full co-subcategory of Sp spanned by p-local spectra by Sp(,. By [Lurl7,
Proposition 2.2.1.9], the functor p-localization is symmetric monoidal, and the inclusion
is lax symmetric monoidal. Since lax symmetric monoidal functors induce functors on
algebra categories, we get a functor

Alg,, (Spg,)) — Alg,, (Sp).

Therefore to prove that S/4 admits an A,-algebra structure, it is enough to prove it is
an A,-algebra in Sp,, as the cofiber of 4 : S(g) — S(g), where S(y) is the 2-local sphere.

Remark 7.3. We have the pair (Sp(y), S(z)) is idempotent in Prl in the sense of [Lurl7,
page 720], so we have the forgetful functor Modsp@)(ﬂ’rL) — Pr" determines a fully
faithful embedding, whose left adjoint is given by the tensoring with Sp(, in Prl .

<

Definition 7.4. We define the co-category of presentable stable 2-local categories fPr(L2)
as Modsp(2>(ﬂ)rL). o

We note a lemma we need for Section [6l

Lemma 7.5. We have an equivalence in Tr(L2)

Fun(€, Sp) ® Sp(g) == Fun(C, Spy) ).
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Proof. Using |Lurl7, Proposition 4.8.1.17], we have

Fun(C, Sp) ® Sp(9) =~ RFun(Fun(€, Sp)®”, Sp(,))
~ LFun(Fun(C, Sp), Sp(3))

~ Fun(C, Sp(3)) "

~ Fun(€, Spy))

op

In particular, we have Sp™ ® Sp(o) ~ Sp?;)-

7.2 Locally Graded stable oco-categories

We recall the notion of locally graded stable co-category from |Lurlb|, and adapt to the
setting of Prl.

Definition 7.6. Let € be a stable co-category. A local grading of € is an equivalence
from € to itself. We will use the term locally graded oo-category to refer to a pair (C,7T),
where T is a local grading on C. o

Example 7.7. The stable oo-category Sp“" admits a local grading by the shift map

X +— X (1), which increases the indices by 1. We Sp®“* denote the full subcategory
spanned by graded spectrum satisfying:

1. The spectrum X; is finite for each index.

2. For all but finitely many indices, the spectrum X; vanishes.

o

Remark 7.8. From |Lurl5| Corollary 2.4.4], the data of a local grading 7" on a stable
oo-category € is equivalent to a monoidal functor

7% — Fun®™(C, @)
S(1) — T.

We will now handle the case where € is presentable.

Lemma 7.9. Let C be a presentable stable co-category. Then the data of a local grading
on C is equivalent to a monoidal colimit preserving functor

Sp“" — LFun(€, @)
S(1) — T.
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Proof. From the previous remark, we know a local grading is equivalent to a object in
Fun® (st, Fun®(C, (3)) Since such a functor on objects sends every n to a equivalence,
the image must lie in the full subcategory of colimit preserving functors LFun(€, €) € Pr;.
Since the stable Yoneda embedding Fun((—)°P, Sp) : Cat,, — Prf; is symmetric monoidal
and left adjoint to the inclusion, we have

Fun® (st, Fun®™(C, (f)) ~ Fumg?ré (SpGr, LFun(C, (‘3))

Using that Z ~ (74)°p. O

Definition 7.10. The co-category Prg, of locally graded stable presentable co-categories
is defined as LModg ca (Pr;). o
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