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Abstract

In this thesis, we construct an obstruction theory for An-algebra structures
in stable ∞-categories. We use this to show that the spectrum S/4 admits an
A5-multiplication.
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1 Introduction

In higher algebra, a classic problem is what multiplicative structures there exists on
quotients of the sphere spectrum. In the discrete analogue, all abelian groups Z/nZ
admit unique commutative multiplications, so one would expect the spectra S/n admit
E∞-ring structures, which is the higher analogue of commutative multiplications. However
what algebraic structures cofibers admit in higher algebra are much more complicated,
depending highly on what number the cofiber is taken of. The following results summarises
our current knowledge of this problem:1

1. For a prime p, the Moore spectrum S/p admits an Ap−1-algebra structure but not
an Ap-algebra structure.

2. For q ≥ 3
2
(n+ 1), the Moore spectrum S/2q admits an En-algebra structure. For p

odd and q ≥ n+ 1, the Moore spectrum S/pq admits an En-algebra structure.

3. The Moore spectrum S/4 admits a A4-algebra structure, but not an E2-algebra
structure.

While the first two results are quite strong, it is still an open question whether S/4
admits an E1-algebra structure. The goal of the thesis is to give an improvement of the
current result:

Theorem A (Corollary 6.9). The Moore spectrum S/4 admits an A5-algebra structure.

In Section 2 we introduce and define An-algebras. In Section 3 we construct an
obstruction theory for An-algebra structures on a object in a stable ∞-category. Such
an obstruction theory is not new, with the first exposition given by Alan Robinson in
[Rob89] for An-ring spectra. We will use a construction developed by Robert Burklund
in [Bur22], which works in a general stable symmetric monoidal ∞-category.

Theorem B (Proposition 3.9). Given a symmetric monoidal stable ∞-category C and a
map r : X → 1C, there exists a sequence of inductively defined obstructions

θk ∈ [Σ2k−3X⊗k, 1C/r],

such that the vanishing of θ1, . . . , θn induces a An-algebra structure on 1C/r with unit
given by the cofiber map.

In Section 4 we shortly introduce the stable ∞-category of F2-synthetic spectra SynF2
,

which is a deformation of the ∞-category of spectra Sp, with a symmetric monoidal
functor τ−1 : SynF2

→ Sp. There is a map to the unit in synthetic spectra

Σ0,2νS 4̃−→ νS,

1Proofs of these statements can be found in [Ang08],[Bur22] and [Bha22] respectively.
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such that τ−14̃ = 4. An An-algebra structure on νS/4̃ then induces a An-algebra structure
on S/4. Working with νS/4̃ instead of S/4, let us keep track of Adams filtration of maps,
which is useful for the next section. In Section 5, we establish a functoriality of our
obstruction theory, so that a monoidal functor F , will send the obstruction θk on an
Ak−1-algebra A to the obstruction for the induced Ak−1-algebra structure on F (A). We
then define an E∞-ring R and a R-module 4̃νS along with a monoidal functor

RModR(SynF2
) → SynF2

4̃νS 7→ νS/4̃.

If 4̃νS admits a A4-multiplication, we show that the map sending the obstruction θ5 for 4̃νS
to the obstruction for νS/4̃, is contractible, which implies νS/4̃ has an A5-multiplication.
In the last section Section 6, we show that 4̃νS admits an A4-multiplication, by tackling
the universal case, given by the following theorem.

Theorem C (Theorem 6.1). Let C be a 2-local presentable symmetric monoidal stable ∞-
category, X ∈ Pic(C) and v : X → 1C be a map to the unit. If the map Q1(v) : ΣX

⊗2 → 1C

vanishes, then 1/v admits a homotopy associative multiplication.

1.1 Notations and Conventions

We will use the setting and language of ∞-categories developed by Jacob Lurie in [Lur09]
and [Lur17].

1.2 Future work

In Section 3, Lemma 3.7 only shows that the functor commutes with n-fold tensor
products, and not An-monoidal, which require either a more detailed analysis of Day
convolution, or an alternative proof technique. The alternative construction of the
obstruction theory relies on Claim 3.12, which is not proved in this thesis. I hope to
later give a proof of this result, as it is both independently interesting, and is used in the
proof of Proposition 5.1.

In Section 6, Lemma 6.4 I hope to extend this lemma, to similar result for odd primes.
This should further lead to new proofs, that S/p is Ap−1-monoidal.

1.3 Acknowledgements

I would like to thank my advisor Robert Burklund for his guidance, helpful advice and
enlightening insight in my thesis topic, in math generally and in everything else.

I would like to thank Jan Steinebrunner, Qingyuan Bai & Vignesh Subramanian for
helpful discussions about different topics related to the thesis, and to Marius Verner
Bach Nielsen and Andreas Momme Studsgaard for giving helpful feedback for drafts of
my thesis.

I am very grateful to all of my friends and fellow students, who have made studying
at university and writing my thesis enjoyable including, but not limited to, Pengkun
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Huang, Bhavna Joshi, Rasmus Lemvig, Josef Nguyen, Marius Kjærsgaard, Li Xiansheng
and Peixiang Tan.

Last, but not least, I am extremelly grateful for my mother, sister and my girlfriend for
their love and support. Hjerteligt tak Bente Willumsgaard, Flora Vernoica Willumsgaard
og Tia Hu.

2 An-Operads

There are different notions of an associative algebra structure on a topological space with
a unit map e : ∗ → X. A topological monoid consists of a map µ : X ×X → X, that is
strictly associative and unital by satisfying the following identities.

µ(µ× 1) = µ(1× µ)

µ(e× idX) = µ(idX ×e) = idx .

Another choice is an associative H-space, which instead of requiring the maps to strictly
agree, only requires them to be homotopic

[µ(µ× 1)] = [µ(1× µ)]

[µ(e× idX)] = [µ(idX ×e)] = [idX ].

Further, an A2-algebra is informally an associative H-space together with a choice of
homotopy. In homotopy theory, associative H-space structures are more natural, since
the spaces of interest are only considered up to homotopy. Associative H-spaces however,
does not have the same useful properties as topological monoids have.

Remark 2.1. The A2-operad is not coherent in the sense of [Lur17], which is used for
given a well-defined tensor product on the module category of an algebra. ⋄

The problems with an associative H-space, can be seen with multiplication of four
elements. Each way of ordering the multiplication, gives a point in the space of maps
MapTop(X

×4, X). Since the different ordering of multiplications are homotopic, we can
choose paths in the mapping space connecting the different points, as can be seen in the
following diagram.
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(ab)(cd)

((ab)c)d

(a(bc))d a((bc)d)

a(b(cd))

Figure 1: Space of multiplications of four elements.

From this picture we see that the space of multiplications of four elements, might not be
contractible. If we want to have a unique multiplication of f elements up to contractible
choice, we need a nulhomotopy of this loop. We can continue this inductively filling
out homotopies in MapTop(X

×n, X). We then get different associative multiplicative
structures on X, depending on how many higher homotopies we require.

This leads to the definition of the An-operads, first defined in [Sta63] and also described
in [Bha22], involving the Stasheff-Associahedra polytopes Kn. In the language of planar
∞-operads q : C⊛ → N(∆op) introduced in [Lur17, Section 4.1.3]2, An-algebras can be
described simpler, by hiding the homotopies inside the notion of functors of ∞-categories.

Definition 2.2 ([Lur17] Definition 4.1.4.2 (Unital Version)). Let q : C⊛ → N(∆op)
be a planar ∞-operad and let 0 ≤ n ≤ ∞. An An-algebra object of C is a functor
A : N

(
∆op

≤n

)
→ C⊛ with the following properties:

1. The following diagram commutes

C⊛

N
(
∆op

≤n

)
N (∆op) .

q
A

i

2. For every inert morphism α : [m′] → [m] in ∆ satisfying 1 ≤ m′ ≤ m ≤ n, the
induced map A(α) : A([m]) → A([m′]) is a q-coCartesian morphism of C⊛.

2The ∞-category of planar ∞-operads Oppl∞ is equivalent to the ∞-category (Op∞)/Assoc⊗ of fibrations
of ∞-operads over Assoc⊗. We use planar ∞-operads as the category ∆op is easier to work with
than Assoc⊗.
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We let AlgAn
(C) denote the full subcategory of

FunN(∆op)(N
(
∆op

≤n

)
,C⊛)×Fun(∆op

≤n,∆
op) {i}

spanned by the unital An-algebra objects of C. We will refer to AlgAn
(C) as the ∞-category

of An-algebra objects of C. ⋄

Remark 2.3. From this we see that An-algebras are like A∞-algebras, where only
multiplication of up to n elements are well-defined. The ∞-category AlgAn

(C) can also be
obtained as the ∞-category of algebras over an ∞-operad explained in [Lur17, Remark
4.1.4.8]. ⋄

3 Building An-structure in stable categories

Constructing An- and A∞-algebras concretely is often practically impossible, as these
structures involve a large structure of homotopies given by the Stasheff-polytopes Kn,
which have complicated cellular structure. On the other hand, the Stasheff-polytopes Kn

are homeomorphic to the disks Dn−2 which are much simpler, leading to an obstruction
theory for An-algebra structures.

We here give one construction based on filtered objects in a stable category. We also
sketch a second construction, which however is not proven.

3.1 An-monoids from algebras in filtered object

Definition 3.1. Let Zfil be the category with objects the integers and maps

MapZfil(n,m) =

{
∗ if n ≤ m

∅ if n > m.

It is given the symmetric monoidal structure by addition on objects. ⋄

Definition 3.2. For any ∞-category C, the ∞-category Cfil of filtered objects in C is
defined as Fun(Zfil,C). If C admits an symmetric monoidal structure C⊗, we let

(
Cfil
)⊗

denote Cfil with symmetric monoidal structure given by Day convolution. [Lur17, Example
2.2.6.17] ⋄

The tensor product of two filtered objects X, Y ∈ Cfil is given by

(X ⊗ Y )n ≃ colim
i+j→n

Xi ⊗ Yj.

Definition 3.3. Given a symmetric monoidal ∞-category C, and an integer n, let Cn

denote the full subcategory of Cfil spanned by filtered objects X ∈ Cfil satisfying:

1. Xm ≃ 0 for m < 0.
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2. X0 ≃ 1C.

3. fm,m′ : Xm → Xm′ is an equivalence for 1 ≤ m ≤ m′ ≤ n.

Furthermore let C⊗
n denote the ∞-operad spanned by objects X1⊕· · ·⊕Xm with Xi ∈ Cn.

⋄

Remark 3.4. An object of Cn is equivalent to a filtered object, which on the first n
terms are on the form

. . . 0 1 X X . . . X

[−1] [0] [1] [2] [n].

u idXidX idX

C⊗
n is not an symmetric monoidal ∞-category, as Cn is not closed under tensor products.

⋄

We will now show that An-algebra structures on X ∈ Cn get send to An-algebras
structures on Xn. First we recall the definition of an An-operad map.

Definition 3.5. Given planar operads C⊛,D⊛ an An-operad map, is a functor

f : C⊛ ×N(∆op
≤n)

N(∆op) → D⊛ ×N(∆op
≤n)

N(∆op)

with the following properties:

1. The diagram

C⊛ ×N(∆op
≤n)

N(∆op) D⊛ ×N(∆op
≤n)

N(∆op)

N(∆op
≤n)

f

commutes.

2. For every inert morphism α : [m′] → [m] in ∆ satisfying 1 ≤ m′ ≤ m ≤ n, the
induced map A(α) : A([m]) → A([m′]) is a q-coCartesian morphism of C⊛.

⋄

Remark 3.6. An An-operad map f induces a functor

AlgAn
(C) → AlgAn

(D)

by composition with f for every natural number n. ⋄
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Lemma 3.7. The composition

C⊗
n ↪→

(
Cfil
)⊗ evn−−→ C⊗

is an An-operad map.

Proof. We will to show that evn commutes with up to n-fold tensor products. That is
given n′ ≤ n and F1, . . . , Fn′ ∈ Cn we have

(F1 ⊗ · · · ⊗ Fn′) (n) ≃ F1(n)⊗ · · · ⊗ Fn′(n).

From the formula of Day convolution, the tensor product of n′ elements evaluated at n is

(F1 ⊗ · · · ⊗ Fn′)(n) = colim
i1+...in′<n

F1(i1)⊗ ...⊗ Fn′(in′).

We can in this case disregard all objects in the colimit where some ij > 1, since all maps

F1(i1)⊗ · · · ⊗ Fj(1)⊗ · · · ⊗ Fn′(in′) → F1(i1)⊗ · · · ⊗ Fj(ij)⊗ · · · ⊗ Fn′(in′)

are equivalences, and as such does not affect the colimit, so we have

(F1 ⊗ · · · ⊗ Fn′)(n) ≃ colim
(ij)∈{0,1}

F1(i1)⊗ · · · ⊗ Fn′(in′).

The diagram the colimit is taken over, is the simplicial set (∆1)n
′ . In this case the map

∆0 ⊆ (∆1)n
′ to the vertex (1, . . . , 1) is cofinal, since the horn inclusion Λ1

1 ⊆ ∆1 is right
anodyne, and right anodyne maps are closed under compositions and products with
simplicial sets. It follows that

(F1 ⊗ · · · ⊗ Fn′)(n) ∼= F1(1)⊗ · · · ⊗C Fn′(1) ∼= F1(n)⊗ · · · ⊗C Fn′(n)

for all 1 ≤ n′ ≤ n, showing that evn is An-monoidal on the subcategory C⊗
n .

F1(0)⊗ F2(0) F1(1)⊗ F2(0) F1(2)⊗ F2(0)

F1(0)⊗ F2(1) F1(1)⊗ F2(1)

F1(0)⊗ F2(2)

≃

≃

Figure 2: The colimit diagram for (F1 ⊗ F2)(1), with F1(1)⊗ F2(1) being final.
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3.2 Obstruction theory

In [Bur22, Proposition 2.4], an inductively defined obstruction theory {θk}k≥2 is con-
structed for a map r : X → 1C in a stable symmetric monoidal ∞-category, such that
the vanishing of all obstructions {θk}k≥2 give an A∞-algebra structure on 1C/r.

Proposition 3.8 ([Bur22], A∞-version). Given a map r : X → 1C in C, there exists a
sequence of inductively defined obstructions

θk ∈ [Σ−3(Σ2X), 1C/r] for k ≥ 2,

whose vanishing allows us to inductively construct a sequence of A∞-algebras

1C = R
0 r1−→ R

1 r1−→ R
2 → · · · → 1C/r

converging to an A∞-algebra structure on 1C/r, where each map rk sits in a pushout
square

1C {Σ−2(Σ2X)} 1C

R
k−1

R
k
.

aug

sk

rk

⌜

In the proof of this proposition, it is further shown that if the obstructions θ2, . . . , θn
vanish, we get an A∞ structure on a filtered object R̃n ∈ Cn with (R̃n)n ≃ 1C/r. The
image of R̃n under the functor

AlgA∞(C) → AlgAn
(C) → AlgAn

(D)

is then an An-algebra with 1C/r as the underlying object. It follows that the vanishing
of the obstructions θ2, . . . , θn, implies the existence of an An-ring structure on 1C/r.
Summing up, we get the following proposition.

Proposition 3.9. Given a map r : X → 1C in C, there exists a sequence of inductively
defined obstructions

θk ∈ [Σ2k−3X⊗k, 1C/r],

such that the vanishing of θ1, . . . , θn induces an An-algebra structure on 1C/r with unit
given by the cofiber map.

3.3 Alternate construction

We here sketch another construction of the obstruction theory based on an unital version
of the following theorem by Lurie in [Lur17, Theorem 4.1.6.8].
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Theorem 3.10. Let C be a monoidal ∞-category, let A be an object of C, and let n ≥ 2.
Then there is a pullback diagram of ∞-categories

AlgnuAn
(C)×C {A} MapC(A

⊗n, A)Kn

AlgnuAn−1
(C)×C {A} MapC(A

⊗n, A)∂Kn .
β

⌜

Where AlgnuAn
(C) is the ∞-category of non-unital An-algebras in C.

This theorem states informally, that the additional data to extend a nonunital An−1-
algebra to a nonunital An-algebra, is a multiplication map of n elements µn : A⊗n → A,
such that it is compatible with the An−1-structure.

A similar result should hold for unital algebras, but in this case the extension should
also respect the unital structure, so that there are homotopies µn ◦ im ∼ µn−1, where
im : A⊗n−1 → A⊗n is the map giving by the unit map in the m’th coordinate. The
following construction allows us to encode these homotopies.

Construction 3.11 ([Bha22]). Let [n] denote the category of ordered subsets of
{1, . . . , n}, and C(n, n − 1) be the full subcategory consisting of subsets of at most
order n− 1. Given an object A in a monoidal ∞-category C, we have a functor

FA
n,n−1 : C(n, n− 1) → C,

sending a set of order i to A⊗i, and sending an inclusion i ⊆ j to the map uI,J : A⊗i → A⊗j

given by idA for j ∈ I and the unit map for j /∈ I. Let T be the colimit of FA
n,n−1. ⋄

By the inclusions of the unit, we get a map T → A⊗n. A unital version of [Lur17,
Theorem 4.1.6.8] should then be the following.

Claim 3.12. Let C be a monoidal ∞-category, let A be an object of C, let φ : 1C → A
be a map from the unit, and let n ≥ 2. Then there is a natural pullback diagram of
∞-categories

AlgAn
(C)×C1/

{1 u−→ A} MapC(A
⊗n, A)Kn

AlgAn−1
(C)×C1/

{1 u−→ A} MapC(A
⊗n, A)∂Kn ×MapC(T,A)∂Kn MapC(T,A)

Kn .
β

This result seems harder to prove than Theorem 3.10, as the subcategory ∆s
≤n ↪→ ∆≤n

only having the injective morphisms in ∆≤n, which is used to define AlgnuAn
(C), is much

simpler than ∆≤n, as the morphisms only go in one direction. We will show how this
claim leads to the obstruction theory when C is a presentable stable ∞-category.

Construction 3.13. Let C be a presentable stable monoidal ∞-category, and u : 1C → A
be a map from the unit to an object. Since Sp is the unit in PrLSt, every stable ∞-category
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is left-tensored over Sp, and further enriched over Sp by [Lur17, Proposition 4.2.1.33]. In
this case we have an equivalence

MapC(A
⊗n, A)Kn ∼= MapC(Σ

∞Kn ⊗ A⊗n, A),

and similar for the other mapping spectra

MapC(A
⊗n, A)∂Kn ×MapC(T,A)∂Kn MapC(T,A)

Kn

∼=MapC

(
Σ∞∂Kn ⊗ A⊗n ⨿Σ∞∂Kn⊗T Σ∞Kn ⊗ T,A

)
.

We can then take the fiber of the map

Σ∞∂Kn ⊗ A⊗n ⨿Σ∞∂Kn⊗T Σ∞Kn ⊗ T → Σ∞Kn ⊗ A⊗n,

which is equivalent to the desuspension of the cofiber. This is then the total cofiber of
the diagram.

Σ∞∂Kn ⊗ T Σ∞Kn ⊗ T

Σ∞∂Kn ⊗ A⊗n Σ∞Kn ⊗ A⊗n,

which is

Σ∞(Kn/∂Kn)⊗ (A⊗n/T ) ∼= Σn−2(A/u)⊗n.

From this we get a cofiber/fiber sequence

MapC(A
⊗n, A)Kn → MapC(A

⊗n, A)∂Kn ×MapC(T,A)∂Kn MapC(T,A)
Kn

q−→ MapC(Σ
n−3(A/u)⊗n, A).

⋄
Remark 3.14. Given an An−1-algebra A in C with unit u : 1C → A, we have a diagram

AlgAn
(C)×C1/

{1 u−→ A} Map(A⊗n, A)Kn

∗ AlgAn−1
(C)×C1/

{1 u−→ A} Map(A⊗n, A)∂Kn ×Map(T,A)∂Kn Map(T,A)Kn .A β

From Claim 3.12, giving an extension of A to an An-algebra, is equivalent to a lift of
β(A) to MapC(A

⊗n, A)Kn . Since MapC(A
⊗n, A)Kn is the fiber of the map

MapC(A
⊗n, A)∂Kn ×MapC(T,A)∂Kn MapC(T,A)

Kn
q−→ MapC(Σ

n−3(A/u)⊗n, A),

the space of extensions of A to an An-algebra structure is equivalent to space of nulho-
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motopies of qβ(A). So qβ(A) is an obstruction for extending An−1-algebra structures.
If A is the cofiber of a map to the unit X → 1C, then the obstruction lies in the same

group as the obstruction in Proposition 5.1.

⋄

4 Synthetic Spectra

We will apply the obstruction theory from Proposition 3.9, to show that S/4 admits an
A5-algebra structure. Since S/4 already admits an A4-algebra structure, the relevant
obstruction is θ5 ∈ π7(S/4) ̸= 0. The obstructions are hard to calculate concretely, and
since θ5 does not lie in a null-group, it does not vanish automatically. We will instead
apply Proposition 3.9 to a stable ∞-category related to Sp.

To do this we introduce the ∞-category of synthetic spectra SynE with regards to an
Adams spectrum E introduced in [Pst22]. We follow the exposition given in [BHS19],
where the focus is not on the construction of SynE, but on what properties it satisfies.
We refer the reader to both of these sources for a more detailed account of synthetic
spectra.3

Definition 4.1. Suppose that E is a homotopy associative ring spectrum such that E∗
and E∗E are graded commutative rings. Following [Pst22, Definition 3.12], we say that a
finite spectrum X is finite E∗-projective (or simply finite projective if E is clear from
context) if E∗X is a projective E∗-module. We say that E is of Adams type if E can be
written as a filtered colimit of finite projective spectra Eα such that the natural maps

E∗Eα → HomE∗(E∗Eα, E∗)

are isomorphisms. ⋄

Construction 4.2 (Pstrągowski). Let E denote an Adams type homology theory. Then
there is a stable, presentable symmetric monoidal ∞-category SynE together with a
functor

νE : Sp → SynE,

which is lax symmetric monoidal and preserves filtered colimits [Pst22, Lemma 4.4].
However, νE does not preserve cofiber sequences in general. When E is clear from context,
we will often denote νE by ν. ⋄

Example 4.3. The spectrum HF2 is of Adams type, which is the only example we will
use. In this case the functor vHF2 is symmetric monoidal [BHS19, Remark 9.5]. ⋄

Since ν does not preserve all cofiber sequences, the synthetic spectra Σν(S) and ν(ΣS)
are not isomorphic. We therefore have two different gradings on SynE.

3Note our convention of bigraded spheres matches [Bur22] and not the above sources. In particular
Sa,b correspond to Sa,a+b in [BHS19] and [Pst22].

13



Definition 4.4. The bigraded sphere Sa,b is defined to be Σ−bν(Sa+b). The map from
the universal property of the pushout

S0,−1 = Σν(S−1) → ν(ΣS−1) = S0,0

is denoted by τ . The cofiber of τ is denoted Cτ . A synthetic spectrum X is τ -invertible
if the map idX ⊗τ : Σ0,1X → X is invertible. The ∞-category SynE(τ

−1) is the full
subcategory of τ -invertible synthetic spectra. ⋄

The following theorem summarises the properties of the ∞-category of synthetic spectra
we will use in this thesis.

Theorem 4.5 (Pstrągowski).

1. The localization functor given by inverting τ is symmetric monoidal.

2. The full subcategory of τ -invertible synthetic spectra is equivalent to the category of
spectra.

3. The composite τ−1 ◦ ν is equivalent to the identity functor on Sp.

4. The object Cτ admits the structure of an E∞-ring in SynE.

5. Suppose that E is homotopy commutative. Then there is a natural fully faithful,
monoidal functor

ModCτ → StableE∗E,

where the target is Hovey’s stable ∞-category of comodules and the composition of
ν(−)⊗ Cτ with this functor is equivalent to E∗(−).

We can construct the following diagram, where every arrow except ν and E∗(−) is a left
adjoint.

Sp

Sp SynE ModCτ StableE∗E

idSp
ν

E∗(−)

τ−1

−⊗Cτ

The reason we introduce synthetic spectra, is that it allows us to keep track of the
Adams filtrations of maps.

Definition 4.6 (Adams Filtration). Let f : X → Y be a map between spectra, and E
be a spectrum. The map f has Adams filtration ≥ n with regards to E, if f can be
written as a composite of maps

X = X0 → ... → Xn = Y,

where each map in the composite induces the 0 map on homology with E. ⋄
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Remark 4.7. The filtration matches the filtration from the Adams spectral sequence for
E. ⋄

Lemma 4.8 ([BHS19] Lemma 9.15). If a map f : X −→ Y of spectra has E-Adams
filtration k, then there exists a factorization in E-synthetic spectra

ν(Y )

Σ0,kν(X) Σ0,kν(Y ).

τk
f̃

ν(f)

Example 4.9. The map 2 : S → S has Adams filtration 1, so there is a map 2̃ : S0,1 → νS
with τ 2̃ = 2. Note that τ−1(S0,0/2̃n) ≃ S/2n. Since localization by τ is a symmetric
monoidal functor, an An-structure on νS/4̃ induces a An-structure on νS/4. ⋄

Proposition 4.10. The synthetic spectrum νS/4 admits an A2-multiplication.

Proof. Applying the obstruction theory from Proposition 3.9 to the map 4̃ : S0,2 → νS in
SynF2

, we get the obstructions

θk ∈ [νS2k−3,3, νS/4̃] = π2k−3,3(νS/4̃)

for k ≥ 2.4 From the calculation of the E2-page of the Adams spectral sequence in
[IWX22], we get that there is no differentials in topological degree less than or equal to
12. [BHS19, Theorem A.8] then implies that in this range the homotopy groups πt,s(νS)
are given by the E2-page of the F2-Adams spectral sequence of S tensored with Z[τ ].
From this, we can calculate the bigraded homotopy groups of νS/4̃ pictured below.

4Each obstruction is only defined by a nulhomotopy of the previous obstruction, so they are not
uniquely defined, and only exists if the previous obstruction vanishes.
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Figure 3: Bigraded homotopy groups of νS/4̃ without τ -multiples. Each dot represents a
copy of F2

Since τ ∈ π0,−1(νS), any τ -multiple lives below non τ -multiples. We then see from the
above diagram, that the obstruction θ2 vanishes since it lives in a null-group.

The location of an eventual third and fifth obstruction does not lie in a null-group, so
they do not vanish formally. The next sections are dedicated to showing these obstructions
vanish.

5 Relating Obstructions in different categories

In Section 4, we saw the obstructions θ3, θ5 for νS/4̃ being a A3- and A5-ring spectrum
respectively, lies in the bigraded homotopy groups π3,3, π7,3 for (νS/4̃) which are both
non-trivial.

To remedy the situation, we will show that these obstructions factors through the quo-
tient map νS → νS/2̃2, which is null on both π3,3, π7,3, implying the obstructions vanishes.
To do so, we will establish a functoriality of the obstruction theory of Proposition 3.9
and use it on another stable ∞-category.

5.1 Map between Obstructions

A monoidal functor F induces a functor on ∞-categories of An-algebras. The following
proposition shows that F also maps the obstruction from Proposition 3.9 to the obstruction
on the target.

16



Proposition 5.1. Let F : C⊗ → D⊗ be an exact monoidal functor of stable monoidal
∞-categories, and let A ∈ AlgAk−1

(C) be an Ak−1-algebra with unit u : 1C → A.
The map F sends the obstruction θk from Proposition 3.9 for A to the obstruction for

extending the induced Ak−1-algebra structure on F (A) to a Ak-structure by the map

MapC(Σ
2k−3(A/u⊗k, A)

F−→ MapD(Σ
2k−3F (A)/F (u)⊗k, F (A)).

If F admits a right adjoint R, the above map factorises as

MapC(Σ
2k−3A/u⊗k, A)

ηA◦−−−−→ MapC(Σ
2k−3A/u⊗k, RF (A))

Ψ−→ MapD(Σ
2k−3F (A)/F (u)⊗k, F (A)).

Where Ψ is adjunction map, and η is the unit of the adjunction.

Proof. From the naturality of Claim 3.12, The obstruction of A is mapped to the
obstruction of F (A) by the map given by the universal property

MapC (A
⊗n, A)

Kn MapC (F (A)⊗n, F (A))
∂Kn

MapC (A
⊗n, A)

∂Kn ×MapC(T,A)∂Kn MapC (T,A)
Kn MapC (F (A)⊗n, F (A))

∂Kn ×MapC(T,F (A))∂Kn MapC (T, F (A))Kn

MapC

(
Σ2k−3A/u⊗k, A

)
MapC(Σ

2k−3F (A)/F (u)⊗k, A).

F

F

Since the two first horizontal maps are given by F , the induced map is also given by
F . The statement of right adjoints, follows from the definition.

Example 5.2. Let A,B be E2-algebras in a symmetric monoidal category C⊗, and let
φ : A → B be a morphism in AlgE2

(C). Then the functor

RModA(C) → RModB(C)

M 7→ M ⊗A B

is E1-monoidal by [Lur17, Theorem 4.8.5.16], with right adjoint given by restriction of
scalars. ⋄

5.2 E∞-Rings from the Thom construction

We will now construct a map of E∞-rings to use Proposition 5.1 and Example 5.2. To do
so we use the Thom construction given in [Car+23]. While [Car+23] only deals with
groups, the construction only uses the underlying monoid structure, and so works equally
well for monoids.

Definition 5.3. Given a presentably symmetric monoidal ∞-category C, let Pic(C)
denote the subgroupoid of C, spanned by invertible objects and equivalences between

17



them with E∞-group structure given by the tensor product. The Thom functor

ThC : AlgE∞(S)/Pic(C) →AlgE∞(C)

(φ : X → Pic(C)) → colimX (i ◦ φ)

is constructed in [Car+23], where i : Pic(C) ↪→ C denotes the inclusion. ⋄

The following proposition gives a unique characterization of ThC up to isomorphism.

Proposition 5.4 ([Car+23]). Let M be an En-monoid and suppose that for every
C ∈ CAlg(PrL), we have a functor

Th′
C : MapEn

(M,Pic(C)) → AlgEn
(C)

lifting colimM along Algn(C) → C, and such that for every F : C → D ∈ AlgEn
(PrL), we

have a natural isomorphism

F (ThC(ξ)) ≃ ThD(F (ξ)).

Then for every C„ we have an isomorphism of functors Th′
C ≃ ThC.

Notation 5.5. We will write ThC as Th, when C is obvious.

Corollary 5.6. The compositions

MapE∞(N,Pic(C)) ThC−−→ AlgE∞(C)
res−→ AlgE1

(C)

and

MapE∞(N,Pic(C))
ev⟨1⟩−−→ C

FreeE1−−−→ AlgE1
(C)

are isomorphic.

Proof. The functor FreeE1 exists and agree with colimN in C by [Lur17, Proposition
4.1.1.18], so both compositions are lift of colimN. Furthermore given F ∈ Alg(PrL) with
right adjoint R, we have the diagram

AlgE1
(C) AlgE1

(D)

C D

R

θ θ

R

so FreeE1 ◦ F ≃ F ◦ FreeE1 , since they are left adjoints to isomorphic functors. It follows
that both res ◦ ThC and FreeE1 ◦ ev⟨1⟩ uphold the properties of Proposition 5.4 and are
therefore isomorphic.

We will now calculate the Picard groups for certain symmetric monoidal ∞-categories.
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Lemma 5.7. Given functors in AlgE∞(PrL)

C
F−→ D

G−→ C

with F fully faithful and GF ≃ idC, we get a splitting in GrpE∞(S).

Pic(D) ≃ Pic(C)⊕G

where G is discrete.

Proof. Since F,G are symmetric monoidal, we get a splitting

Pic(C) Pic(D) cofib(Pic(F )).
Pic(F )

Pic(G)

We then have an equivalence

Pic(D) ≃ Pic(C)⊕ cofib(Pic(F )).

Since F is fully faithful, πn Pic(F ) is an isomorphism for n ̸= 0, and π0 Pic(F ) is an
injection, so πn cofib(Pic(F )) vanishes for n ̸= 0.

Example 5.8. For SynF2
, we have the splitting

Sp
ν−→ SynF2

τ−1

−−→ Sp

with τ−1ν ≃ 1 and ν fully faithful, so we have an equivalence

Pic(SynF2
) ≃ Pic(Sp)⊕GSynF2

with GSynF2
discrete. The synthetic spectrum S0,2 is invertible, with inverse S0,−2, so

S0,−2 ∈ Pic(SynF2
). Since τ−1 (S0,−2) ≃ S, we have S0,2 is send to the sphere S in Sp, so

we have S0,2 ∈ GSynF2
. ⋄

Definition 5.9. Let Zds be the symmetric monoidal category with objects being the
integers, and morphisms being only identity morphisms, where the symmetric monoidal
structure is given by addition on the integers.

For an ∞-category C, the ∞-category of graded objects CGr is defined as the functor
category Fun(Zds,C). If C is (symmetric) monoidal, then CGr is given the (symmetric)
monoidal structure from Day convolution. ⋄

Example 5.10. For CGr, we have the splitting

C
i0−→ CGr colim−−−→ C,
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where i0 is the inclusion in the 0’th coordinate. We then have an equivalence

Pic(CGr) ≃ Pic(C)⊕GCGr

with GCGr discrete. The graded object 1C(1) is invertible in CGr, with inverse 1C(−1), so
1C(1) ∈ Pic(SynF2

). Since colim (1C(1)) ,≃ 1C The graded object 1C(1) maps to the unit
in C, so we have 1C(1) ∈ GCGr . ⋄

Example 5.11. Combining the two above examples, we get an equivalence

Pic(SynGr
F2
) ≃ Pic(Sp)⊕G′

with S0,2(1) ∈ G′ = GSynGr
F2

⊕ GSynF2
. Since G′ is discrete, we get a map of monoids

N → G′ → Pic(SynGr
F2
), sending 1 to S0,2(1). ⋄

Construction 5.12. We have an adjunction

SpGr
≥0 SpGr

i

τ≥0

with i0 symmetric monoidal, so τ≥0 is lax monoidal, giving a functor

AlgE∞(SpGr)
τ≥0−−→ AlgE∞(SpGr

≥0).

⋄

Definition 5.13. We let RGr denote the E∞-algebra given by the image of the map
φ : N → Pic(SynGr

F2
) sending 1 to S0,2(1) by the functor

MapE∞(N,Pic(SynGr
F2
))

Th−→ AlgE∞(SynGr
F2
)

τ≥0−−→ AlgE∞((SynGr
F2
)≥0),

and R be given by the image of RGr under the map

AlgE∞((SynGr
F2
)≥0)

colim−−−→ AlgE∞(SynF2
).

⋄

Remark 5.14. Since the Thom functor on underlying objects is given by colimN,
the underlying graded synthetic spectrum of RGr is

⊕
n∈N S0,2n(n). Furthermore R

must have underlying synthetic spectrum given by
⊕

n∈N0
S0,2n, with homotopy groups

π∗,∗R = π∗,∗νS[x] with x sitting in bidegree (0, 2). ⋄

Remark 5.15. We have an adjunction

(SynGr
F2
)≥0 SynF2

,
p0

i0
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where both i0 and p0 are monoidal, so the unit and counit of the adjunction is monoidal.
Applying the unit to RGr, we then get a E∞-map of graded synthetic spectra

RGr → i0p0R ∼= νS(0).

We can further take the colimit on both sides, which is a symmetric monoidal functor,
giving a E∞-map of synthetic spectra

R → νS.

⋄

Synthetic Obstruction Map

We will now use the map R → νS, to give a map of obstructions. Since R is an E∞-ring,
there is a symmetric monoidal structure on the module category RModR(SynF2

).

Definition 5.16. Let 4̃νS be the cofiber of the map Σ0,2R
·x−4̃−−→ R in RModR(SynF2

). ⋄

Remark 5.17. The notation is supposed to suggest that 4̃νS has underlying synthetic
spectrum νS, where the free generator of R acts by multiplication by 4̃. To see this, note
we have a long exact sequence

πa,b−2(R) πa,b(R) πa,b(4̃νS) πa−1,b−1(R) πa−1,b+1(R)
x−4̃ x−4̃

and since πa,b(R) = πa,b(νS)[x], we have

πa,b(4̃νS) = πa,b(νS)[x]/(x− 4̃) ∼= πa,b(νS)

so the map on underlying synthethic spectra

νS → R →4̃ νS

is an equivalence. ⋄

The E∞-ring map R → νS induces a symmetric monoidal map on module cate-
gories by the pushforward functor. Since νS is the unit in SynF2

, its module category
RModνS(SynF2

) is equivalent to SynF2
.

Lemma 5.18. The symmetric monoidal functor RModR(SynF2
) → SynF2

induced by the
map R → νS, sends 4̃νS to νS/4̃.

Proof. The pushforward is a left adjoint, so it commutes with colimits. We then have

cofibR(Σ
0,2R

x−4̃−−→ R)⊗R νS ∼= cofibSynF2
(Σ0,2νS 4̃−→ νS) ∼= νS/4̃.
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Combining this lemma with Proposition 5.1 and Example 5.2, we get

Proposition 5.19. An An−1-algebra structure on 4̃νS over R, induces a An−1-algebra
structure on νS/4̃, and the obstruction for an An-algebra structure on 4̃νS over R, gets
mapped to the obstruction for an An-algebra on νS/4̃ by the map

π2n−3,3(νS) = π0MapR(Σ
2n−3,3R,4̃ νS)

ηM−−→ π0MapR(Σ
2n−3,3R, νS/4̃)

Ψ−→ π0MapSynF2
(Σ2n−3,3νS, νS/4̃) = π2n−3,3(νS/4̃).

In particular, we have the following proposition.

Proposition 5.20. If 4̃νS admits the structure of an A4-νS[S0,2]-algebra structure then
νS/4̃ admits an A5-structure, implying that S/4 admits an A5-algebra structure.

Proof. In this case the A5-obstruction is well-defined for 4̃νS, and as such the A5 obstruc-
tion for νS/4̃ factors through the map

π7,3(νS) → π7,3(νS/4̃).

We draw the homotopy groups of νS below, with vertical lines denoting 2̃ multiplications.
From this we see π7,3(νS) only consists of 4̃-multiples so the map is null.

0 2 4 6 8

0

2

4

6

8

θ2 θ3 θ4 θ5

Figure 4: Bigraded homotopy groups of νS without τ -multiples. Each dot represent a
copy of F2.
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Remark 5.21. The location of the obstruction for an A4-algebra structure on 4̃νS over
R is a null-group by the above picture so it suffices for Proposition 5.20 to show that
4̃νS is an A3-algebra over R. ⋄

We will now show 4̃νS admits an A3-algebra structure.

6 Homotopy associative multiplications

In this section every stable ∞-category is 2-local, in the sense of Section 7.1. We will
suppress the (2) from the notation.

Theorem 6.1. Let C be a presentable symmetric monoidal stable ∞-category, X ∈ Pic(C)
and φ : X → 1C be a map to the unit. If the map Q1(φ) : ΣX

⊗2 → 1C vanishes, then
1C/φ admits an A3-multiplication.

To prove this result we will tackle the universal case.

Lemma 6.2. There exist a symmetric monoidal stable locally graded presentable ∞-
category A ∈ CAlg

(
PrLGd

)
, such that for any other C ∈ CAlg

(
PrLGd

)
, the diagram

Fun⊗
PrL,Gd(A,C) ∗

MapC(T (1C), 1C) MapC(ΣT
2(1C), 1C)

⌜
0

Q1

is a pullback square, where Q1 assigns the power operation Q1 to maps in T (1C) → 1C.

Proof. We will first construct A. From Section 7.2, we have SpGr is the initial object
in CAlg

(
PrLGd

)
. Given B ∈ CAlg(SpGr), from [Lur17, Remark 4.8.5.12] we get an

adjunction

Fun⊗
PrLGd

(
RModB(Sp

Gr),D
)
≃ MapCAlg(SpGr)

(
B,EndGd(D)

)
,

where EndGd is the graded algebra of endomorphisms of the unit described in [Lur15,
Remark 2.4.9]. Let S{v},S{w} ∈ CAlg(SpGr) be the free E∞-algebras on generators v, w,
where v has degree 0 and filtration 1, and w has degree 1 and filtration 2. Let A be
pushout in AlgE∞

(
SpGr

)
of the diagram

S{w} S{v}

S A.

Q1(v)·

0·

⌜
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From the above adjunction, we have

Fun⊗
PrLGd

(
RModA(Sp

Gr),D
)

≃ MapSpGr

(
S(1),EndGd(D)

)
×Map

SpGr(S1(2),EndGd(D)) ∗

≃ MapD(1D(1),1D)×MapD(Σ1D(2),1D) ∗.

A symmetric monoidal functor in PrLGd out of RModA(Sp
Gr), is then given by a map

φ : 1D(1) → 1D, such that Q1(φ) is nulhomotopic.

Remark 6.3. Applying the above result to the identity RModA(SpGr), we get a universal
map is A(1)

·v−→ A, which is adjoint to the map v : S(1) → A. It then follows that a
symmetric monoidal functor F : A → D determined by a map φ : 1D(1) → 1D sends v
to φ, and A/v to 1D/φ. ⋄

We will now study A more carefully.

Lemma 6.4. The map given by S{v}(1) ·v−→ S{v} induce an isomorphism

MapSpGr

(
Si(3),S{v}(1)

)
→ MapSpGr

(
Si(3),S{v}

)
Proof. By [Lur17, Example 3.1.3.14], the underlying graded spectrum of 1(S(1)) is⊕

n≥0

Symn
SpGr (S(1)) ≃

⊕
n≥0

Symn
Sp(S)(n)

so we have

MapSpGr(Si(3),1{S}(1)) ≃ MapSp(Si, Sym2
Sp(S))

MapSpGr(Si(3),1{S}) ≃ MapSp(Si, Sym3
Sp(S)).

The remaining part of this proof is to show that the map from Sym2
Sp(S) = Σ∞

+BΣ2(2) to
Sym3

Sp(S) = Σ∞
+BΣ2(2) is an equivalence, where Σn is the symmetric group, and the map

is induced from the inclusion of Σ2 to Σ3. Since the spectra are 2-local, it is enough to
show the map induce an isomorphism on F2- homology. We have

H∗(BΣ2;F2) = H∗(RP∞;F2) = F2[x].

We can calculate H∗(BΣ3;F2) using the Hochschild–Serre spectral sequence, with the
normal subgroup F3

Hp(F2, Hq(F3,F2)) =⇒ Hp+q(Σ3,F2).

We have

Hp(F3;F2) =

{
F2 p = 0

0 else
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so the groups in the spectral sequence are given by.

Hp(F2, Hq(F3,F2)) =

{
F2 q = 0

0 else

So the spectral sequence degenerates on the first page

H∗(BΣ3;F2) = H∗(RP∞;F2) = F2[x].

From this we get both spectra have the same F2-homology. We further have the
composition

Σ2 ↪→ Σ3 sign−−→ Σ2

is the identity, which implies the map H∗(BΣ2;F2) → H∗(BΣ3;F2) is injective. It follow
then since they have isomorphic finite homology in each degree, that the spectra are
equivalent.

Since our spectra are 2-local, we can also from the F2-homology, find a minimal cellular
structure of them, displayed here.

0 2

0

2

4

1 v v2 v3

Q1(v)

Q2(v)

Q3(v)

Q4(v)

Q5(v)

Q1(v) · v

Q2(v) · v

Q3(v) · v

Q4(v) · v

·2

·η

·2

·2

·2

·

Figure 5: Cell Structure of S{v}, in filtration 0 to 3, with horizontal axis giving filtration
and vertical axis giving the degree. Each dot represent a copy of the sphere
spectrum.
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Lemma 6.5. The map A(1)
·v−→ A induce an isomorphism

MapSpGr(Si(3), A(1)) → MapSpGr(Si(3), A).

Proof. This follows from the previous lemma, as the only cells attached in the diagram

S{w} S{v}

S A

Q1(v)·

0·

⌜

in filtration 3 or less, is a cell S1(2) denoted by w and a cell S1(3) corresponding to v ·w,
attached to Q1(v) and Q1(v) · v respectively, so it has cell structure given in the following
diagram.

0 2 4

0

2

4

1 v v2 v3

Q1(v)

Q2(v)

Q3(v)

Q4(v)

Q5(v)

Q1(v) · v

Q2(v) · v

Q3(v) · v

Q4(v) · v

w

·1·2

·η

·2

w

·1·2

·η

·2

Figure 6: Cell Structure of A, in filtration 0 to 3, with horizontal axis giving filtration
and vertical axis giving the degree. Each dot represent a copy of the sphere
spectrum.

Which is identical in filtration 2 and 3.

Proposition 6.6. The cofiber A/v admits a A3-multiplication.

Proof. From Lemma 6.5, we can calculate the cell structure of A/v.
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0 2

0

2

4

1

Q1(v)

Q2(v)

Q3(v)

Q4(v)

Q5(v)

·2

·2 ·1

·η

w

This then shows there is no non-trivial maps from any spheres in filtration 3. In
filtration 2, there are no maps from spheres of degree less than 2. The obstruction to
giving a A2-structure on the cofiber of v lives in

[S1(2), A/v]SpGr ,

which is a nul-group so the obstruction vanishes automatically.
The obstruction to giving a A3-structure lives in

[(ΣA(1))⊗3, A/v]RModA(SpGr) ≃ [S3(3), A/v]SpGr .

which is also a nulgroup, and so also vanishes. We can then conclude from Proposition 3.9,
that A/v admits a A3-multiplication.

Proof of Theorem 6.1. Let C be a presentable symmetric monoidal stable category, and
let X ∈ Pic(C). Then the functor

C
id⊗X−−−→ C⊗ C

m−→ C

is an equivalence of C, so C admits the structure of a locally graded ∞-category with
1C(1) = X. A map φ : X → 1C with Q1(φ) nulhomotopic, then gives a symmetric
monoidal functor RModA(Sp

Gr) → C sending A/v to 1C/φ by Lemma 6.2. Since A/v
admits an A3-algebra structure, the functor induces a A3-algebra structure on 1C/φ.
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We can apply this result to finish our study of S/4. From Proposition 5.20, to prove S/4
admits an A5-multiplication, we just have to prove that 4̃νS admits a A3-multiplication.

Lemma 6.7. Given a symmetric monoidal functor F : C⊗ → D⊗ and a E∞-algebra
X ∈ AlgE∞(C) and a map φ : A → X, we have

F (Q1(φ)) = Q1(F (φ)).

Proposition 6.8. the synthetic module 4̃νS admits an A3-algebra structure over R.

Proof. The module 4̃νS is the cofiber of the map x− 4̃ : Σ0,2R → R in RModR(SynF2
).

Σ0,2R is a unit in RModR(SynF2
), so we are left to check Q1(x− 4̃) is nulhomotopic.

We have a diagram

R[Σ
1,3R,R] S[x][ΣS[x],S[x]]

SynF2
[Σ1,3νS, R] Sp[ΣS,S[x]],

τ−1

≃ ≃

τ−1

where the horizontal maps are injections, since there is no τ -torsion in these ranges.
To check Q1(x − 4̃) is nulhomotopic, we can then equally show Q1(x − 4) in Sp is
nulhomotopic. Here we have the rule

Q1(x− 4) = 16Q1(x) + x2Q1(4) + ηx4.

We have Q1(4) = 0 and η is 2-torsion, so the last two terms vanish.
For Q1(x), recall it is given as the composition

S1 → D2(S)
D2(x)−−−→ D2(S[x]) → S[x]

where D2(X) = X⊗2
hΣ2

is the second extended power. The multiplication on S[x] ≃
∐

n≥0 S
is given by (∐

n≥0

S

)
⊗

(∐
m≥0

S

)
≃
∐

n,m≥0

S⊗ S m−→
∐
n≥0

S.

which sends the (n,m)’th term to the n+m’th term with the multiplication map of S.
From this we get a commuting square

S1 D2(S) D2(S[x])

S S[x].

D2(x)

m m

x2

We then see that Q1(x) = Q1(1)x
2 = 0, Since Q1(1) = 0 in S.
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Corollary 6.9. The spectrum S/4 admits an A5-multiplication.

7 Appendix

7.1 Localising Stable categories at primes

Since our primary object of interest is S/4, we would like to focus on 2-complete
presentable categories. For this we introduce Bousfield localisation.

Definition 7.1. A map f : X → Y in Sp is an E-equivalence, If E⊗f : E⊗X → E⊗Y is
an equivalence of spectra. A spectrum Z is E-local if for every E-equivalence f : X → Y ,

Map(Y, Z)
f∗−→ Map(X,Z)

is an equivalence. An E-localization of X is an E-local spectrum LEX, with an E-
equivalence X → LE(X). ⋄

An E-localization always exists and is unique.

Example 7.2. Localization with respect to the Moore spectra E = SZ(p) is called
p-localization. The spectrum S/4 is 2-local. ⋄

We denote the full ∞-subcategory of Sp spanned by p-local spectra by Sp(p). By [Lur17,
Proposition 2.2.1.9], the functor p-localization is symmetric monoidal, and the inclusion
is lax symmetric monoidal. Since lax symmetric monoidal functors induce functors on
algebra categories, we get a functor

AlgAn
(Sp(p)) → AlgAn

(Sp).

Therefore to prove that S/4 admits an An-algebra structure, it is enough to prove it is
an An-algebra in Sp(p), as the cofiber of 4 : S(2) → S(2), where S(2) is the 2-local sphere.

Remark 7.3. We have the pair (Sp(2),S(2)) is idempotent in PrL in the sense of [Lur17,
page 720], so we have the forgetful functor ModSp(2)(Pr

L) → PrL determines a fully
faithful embedding, whose left adjoint is given by the tensoring with Sp(2) in PrL .

⋄

Definition 7.4. We define the ∞-category of presentable stable 2-local categories PrL(2)
as ModSp(2)(Pr

L). ⋄

We note a lemma we need for Section 6.

Lemma 7.5. We have an equivalence in PrL(2)

Fun(C, Sp)⊗ Sp(2) ≃ Fun(C, Sp(2)).

29



Proof. Using [Lur17, Proposition 4.8.1.17], we have

Fun(C, Sp)⊗ Sp(2) ≃ RFun(Fun(C, Sp)op, Sp(2))

≃ LFun(Fun(C, Sp), Spop
(2))

op

≃ Fun(Cop, Spop
(2))

op

≃ Fun(C, Sp(2))

In particular, we have SpGr⊗ Sp(2) ≃ SpGr
(2).

7.2 Locally Graded stable ∞-categories

We recall the notion of locally graded stable ∞-category from [Lur15], and adapt to the
setting of PrL.

Definition 7.6. Let C be a stable ∞-category. A local grading of C is an equivalence
from C to itself. We will use the term locally graded ∞-category to refer to a pair (C, T ),
where T is a local grading on C. ⋄

Example 7.7. The stable ∞-category SpGr admits a local grading by the shift map
X 7→ X(1), which increases the indices by 1. We SpGr,fin denote the full subcategory
spanned by graded spectrum satisfying:

1. The spectrum Xi is finite for each index.

2. For all but finitely many indices, the spectrum Xi vanishes.

⋄

Remark 7.8. From [Lur15, Corollary 2.4.4], the data of a local grading T on a stable
∞-category C is equivalent to a monoidal functor

Zds → Funex(C,C)

S(1) 7→ T.

⋄

We will now handle the case where C is presentable.

Lemma 7.9. Let C be a presentable stable ∞-category. Then the data of a local grading
on C is equivalent to a monoidal colimit preserving functor

SpGr → LFun(C,C)

S(1) 7→ T.
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Proof. From the previous remark, we know a local grading is equivalent to a object in
Fun⊗ (Zds,Funex(C,C)

)
. Since such a functor on objects sends every n to a equivalence,

the image must lie in the full subcategory of colimit preserving functors LFun(C,C) ∈ PrLSt.
Since the stable Yoneda embedding Fun((−)op, Sp) : Cat∞ → PrLSt is symmetric monoidal
and left adjoint to the inclusion, we have

Fun⊗ (Zds,Funex(C,C)
)
≃ Fun⊗

PrLSt

(
SpGr,LFun(C,C)

)
Using that Zds ≃ (Zds)op.

Definition 7.10. The ∞-category PrLGd of locally graded stable presentable ∞-categories
is defined as LModSpGd

(
PrLSt

)
. ⋄
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